class: fullbleed, math background-color: black ![](plant3.JPG# absolute ofv w-9-12th h-7-12th) ![](plant6.JPG# absolute ofv w-3-12th h-3-12th t-0 l-9-12th) ![](plant9.JPG# absolute ofv w-2-12th h-9-12th t-3-12th l-9-12th) ![](plant7.JPG# absolute ofv w-1-12th h-5-12th t-3-12th l-11-12th) ![](plant8.JPG# absolute ofv w-1-12th h-4-12th t-8-12th l-11-12th opr) ![](plant2.JPG# absolute ofv w-5-12th h-5-12th t-7-12th l-0) ![](plant4.JPG# absolute ofv w-4-12th h-3-12th t-7-12th l-5-12th) ![](plant5.JPG# absolute ofv w-4-12th h-2-12th t-10-12th l-5-12th) .absolute.w-100pct.pa-2.center.t-40pct.ba.bw-0.br-0.bg-white-80pct[ ## <b>Predictive modelling of plant communities</b> <br> Challenges for a dynamical approach ] --- layout: true .footer[ <!-- - @DrIsaBlg --> - <i class="fab fa-github"></i>iboulangeat <!-- - isabelle.boulangeat@irstea.fr --> - april 2019, ECOVEG 14, Toulouse <!-- - ![logo](/img/logo.jpg) --> ] <!-- --> --- class: # Prediction in community ecology .absolute.l-4.t-4[**Why?**] -- .absolute.l-10pct.t-5[climate change<br>habitat fragmentation<br>land-use changes<br>changes in disturbances<br>changes of human practices] -- .absolute.r-6.t-4[**What?**] -- .absolute.l-50pct.t-5[species composition<br>species diversity (taxonomic, functional, phylogenetic)<br>community-level attributes (annual biomass production, canopy height, ...)] --- class: # Modelling approach ![Image](modelling.png# w-80pct) --- class: # From explanatory to anticipatory models .absolute.r-2.b-2[<sub><sup><sup>Mouquet et al. 2015, JAE</sub></sup></sup>] Why ? more data, more tools -- <b>Explanatory</b> : theoretical expectations and tests (hypothetico-deductive) <b>Anticipatory</b> : predictions\* conditionnal to hypotheses (models) <br> \*forecasts, projections -- but necessity for theoretical frameworks to build models in both cases --- class: # Coexistence theories #### What explain the presence of a species in a particular place? -- ![Image](grinnell.png# relative t-1 w-70pct) -- ![Image](hutchinson.png# relative w-70pct) -- ![Image](pulliam.png# relative w-70pct) -- ![Image](soberonVenn.png# absolute h-40pct r-2 b-4) -- ![Image](hubbell.png# relative w-70pct) <!-- ========================================================================== --> --- class: title, smokescreen, no-footer background-image: url(abandon_static.png) # Static approaches and their limits --- class: # The SDM framework ![Image](NBmodels.png# absolute l-5 h-70pct) --- class: # Explain with SDM ![Image](hierarchicalNiche2.png# absolute h-70pct t-4 l-3) -- .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2012, EcoLet</sub></sup></sup>] ![Image](ecoletModel.png# h-60pct absolute l-6 b-4) -- ![Image](ecoletResults.png# h-60pct absolute r-1 b-4) --- class: # Anticipate with stacked-SDM ![Image](ccDiv.png# w-33pct r-0 b-0) ![Image](ccInv.png# w-33pct r-0 t-0) ![Image](ccTOL.png# w-33pct fr l-0) -- <br><br><br> Stack of multiple single-species SDM -- <br> -> no species interactions --- class: # Including species interactions 1. Biotic elements as explicative variables (dominant species, community attribute, ...) -- 2. Joint modelling (jSDM) : conditional presence .absolute.r-2.b-2[<sub><sup><sup>Pollock et al. 2014, MEE</sub></sup></sup>] ![Image](pollock2014.jpg#db w-80pct) --- class: img-left # Integrating stacked-SDM and assembly rules ![Image](SESAM.png# h-80pct) .absolute.r-2.b-2[<sub><sup><sup>D'Amen et al. 2015, JOB and GEB</sub></sup></sup>] -- <br>Historical and evolutionary constraints <br><sup>-> potential species pool ("Dark diversity")</sup> -- <br>Abiotic constraints <br><sup>-> ex. SDM</sup> -- <br>Macroecological constraints <br><sup>-> species richness and/or trait space</sup> -- <br>Species interactions (assembly rules) <br><sup>-> random selection, MaxEnt, ...</sup> --- class: fit-h1 # Predicting ecological communities : an overview .absolute.r-2.b-2[<sub><sup><sup>D'Amen et al. 2017, Biol.Rev.</sub></sup></sup>] ![Image](DAmen2017.png# db) <!-- ========================================================================== --> --- class: title, smokescreen, no-footer background-image: url(abandon.gif) # Towards a dynamic perspective --- class: # Limit of a static approach ![Image](leading-trailing-edge.png# w-40pct) -- .fixed.bg-white-80pct.t-50pct.l-50pct[->colonisation credit] .fixed.bg-white-80pct.t-80pct.l-50pct[->extinction debt] --- class: # Origin of lags -- #####Rapid <br> global changes ![Image](temperature.png# db h-60pct) ![Image](population.png# h-60pct) <sub><sup><sup>IGBP and resilience center</sub></sup></sup> -- ![Image](perturbation.png# absolute r-3 t-4 h-30pct) -- ![Image](3facts.png# absolute w-70pct b-3 r-2) --- class: fit-h1 # Consequences for multi-species modelling <br> Static approaches **infer** biotic interactions (and resulting community assembly) from species' co-occurrences -- <br><br>-> Hypothesis of equilibrium -- <br> - May be a problem for calibration - Is limiting for prediction of transient states -- <br><br>Dynamic approaches can **simulate** species interactions .absolute.r-2.b-2[<sub><sup><sup>Dormann et al. 2018, GEB</sub></sup></sup>] <!-- ========================================================================== --> --- class: title, smokescreen, no-footer background-image: url(dandelion.jpg) # Models based on metapopulation dynamics --- class: # From niche to neutral theories ![Image](coexistenceTheories.png# relative center h-80pct w-80pct) --- class: fit-h1 # Models based on metapopulation dynamics | STATES| **presence**| **absence**| | ------| ---------| --------| | **presence**| 1-p(e) | p(e) | | **absence**| N.p(c) | 1-N.p(c) | .absolute.fr.r-10pct.t-20pct.ofc.w-5-12th[e=extinction ; c=colonisation ; N=regional prevalence] -- ![Image](STM_PA.png# relative center h-70pct w-70pct) --- class: fit-h1 # Models based on metapopulation dynamics ![Image](ex_talluto_nee.png) .absolute.r-2.b-2[<sub><sup><sup>Talluto et al. 2017, Nature Ecology and Evolution</sub></sup></sup>] --- class: # Integrating biotic interactions 1. Biotic elements as explicative variables (dominant species, community attribute, ...) 2. Regroup species 3. Multi-species model --- class: # Integrating biotic interactions Community level: 2 ~species .absolute.r-2.b-2[<sub><sup><sup>Vissault et al., in revision</sub></sup></sup>] ![Image](stm_classif.png# h-60pct absolute b-3 l-2) -- ![Image](stm_succession.png# w-40pct absolute l-6 b-3) ![Image](colo4states.png# w-20pct absolute r-30pct t-60pct) -- ![Image](stm_colo.png# w-40pct absolute l-6 b-3) -- ![Image](stm_exclu.png# w-40pct absolute l-6 b-3) -- ![Image](stm_disturbance.png# w-40pct absolute l-6 b-3) -- --- class: # Predictions: a simulation approach .absolute.r-2.b-2[<sub><sup><sup>Vissault et al., in revision</sub></sup></sup>] <br> ![Image](STM_spatial.png# absolute w-50pct) -- ![Image](stm_simuCC.png# absolute w-70pct b-3) <!-- ========================================================================== --> --- class: title, smokescreen, no-footer background-image: url(melezein_ubac_freaux2.JPG) # Dynamic vegetation models (DVM) --- class: # The interest of DVM .absolute.r-2.b-2[<sub><sup><sup>Snell et al. 2014, Ecography</sub></sup></sup>] 1. Multi-species! -- 2. Dynamic (simulation models) : transient states and lags -- 3. Process-based interactions : potential to predict non-analog communities -- 4. Multi-scale : individual to landscape processes -- 5. Spatially explicit -- <br><br> Processes of interest: reproduction, establishment, growth, mortality --- class: compact # Dynamic vegetation models ![Image](forestGapModel.png# absolute w-30pct t-3 r-2) **Forest gap models (stand models)** <br><sub><sup><sup>JABOWA (Botkin 1972), FORET (Shugart 1884), ZELIG (Smith 1988), SORTIE (Deutschmann 1997)</sub></sup></sup> <br>Aim : optimize **wood production** for harvest <br>Principle : indiv. based models based on **competition for light** -- <br><br> **Forest Landscape Models (FLM)** <br><sub><sup><sup> LANDIS (He 1999), LANDCLIM (Schumacher 2004), TreeMig (Lischke 2006), LANDIS II (Scheller 2007) </sub></sup></sup> <br>Aim : account for landscape processes (fire, seed dispersal) <br>Principle : upscaling stand models - Cohorts, height classes, PFT, representative cells, ... - Aggregate spatial and temporal scales <br> --- class: compact, fit-h1 # Dynamic vegetation models ![Image](quillet2010.png# absolute r-2 t-3 w-40pct) .absolute.r-2.b-5[<sub><sup><sup>Quillet et al. 2010, Env. Rev.</sub></sup></sup>] **Dynamic Global Vegetation models (DGVM)** <br> <sub><sup><sup>LPJ (Sitch 2001), MC1 (Bachelet 2001)</sub></sup></sup> <br>Aim : simulate **Net Primary Productivity** <br>Principle : **Photosynthesis** ~ light + CO2 + temperature -- <br><br> **Combined DGVM and forest models** <br> <sub><sup><sup>LPJ-GUESS (Smith 2003), LM3-PPA (Weng 2015)</sub></sup></sup> <br>Aim : improve the simulation of transitions between biomes <br>Principle : model coupling (Hybrid-DGVM) May include: - height-structured competition for light - within-PFT variation --- class: # A scaled overview ![Image](scale-2.png# w-70pct) --- class: compact, img-left # Beyond forest focus: an exemple with FATE-HD FATE-HD among DVMs <br><br> ![Image](FATE-among.png) .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, GCB</sub></sup></sup>] -- A landscape model dealing with **forest and non-forests** - Response to climate (via Habitat model) - Vegetation diversity (PFG) - Simpified population dynamics (competition for light, dispersal, demography) - Semi-quantitatif (easy to parameterize) - Disturbances (fire, grazing, mowing) --- class: # FATE-HD model .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, GCB</sub></sup></sup>] ![Image](FATE_pixel.png# absolute w-20pct l-60pct t-40pct) -- ![Image](FATE_demo.png# absolute w-20pct l-40pct t-40pct) .absolute.r-4.t-3[<sub><sup><sup>Germination <br> Recruitment<br> Growth<br>Survival<br>Fecundity</sub></sup></sup>] --- class: # FATE-HD model .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, GCB</sub></sup></sup>] ![Image](FATE_demo.png# absolute w-20pct l-40pct t-40pct) .absolute.r-4.t-3[<sub><sup><sup>Germination <br> Recruitment<br> Growth<br>Survival<br>Fecundity</sub></sup></sup>] ![Image](FATE_abiotic.png# absolute w-20pct r-6 t-1) -- ![Image](FATE_biotic.png# absolute w-30pct l-4 t-5) -- ![Image](FATE_disp_all.png# absolute w-50pct r-4 b-10pct) --- class: # FATE-HD model .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, GCB</sub></sup></sup>] ![Image](FATE_demo.png# absolute w-20pct l-40pct t-40pct) ![Image](FATE_abiotic.png# absolute w-20pct r-6 t-1) ![Image](FATE_biotic.png# absolute w-30pct l-4 t-5) ![Image](FATE_disp.png# absolute w-20pct r-6 b-10pct) ![Image](FATE_dist.png# absolute w-33pct r-3 b-40pct) --- class: # Parameterization : functional Groups ![Image](paramPFG.png#) .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2012, GCB</sub></sup></sup>] --- class: # Is it enough to represent biodiversity? ![Image](commMeasures.png# w-80pct) -- ![Image](PFG_comp.png# w-80pct) --- class: # Is it enough to represent biodiversity? <br><br> ![Image](PFG_comp_graphs.png# absolute l-20pct w-80pct) --- class: # Parameterization : data ![Image](paramData.png# w-80pct) .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, Ecography</sub></sup></sup>] --- class: # FATE-HD vs SDM (at equilibrium) Refine PFGs distribution inside their habitat limits ![Image](FATE_SDM.png# w-80pct) --- class: # Scenarios ![Image](scenariosPNE.png# db w-80pct) .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, Ecography</sub></sup></sup>] --- class: # Scenarios ![Image](legend_anim.png# absolute t-10pct r-20pct h-20pct) .absolute.l-4.t-30pct[Intensification] ![Image](intens.gif# fixed b-2 l-4 w-34pct) <!-- .fixed.b-2.l-4[<video height="400" autoplay><source src="intens.mp4" type="video/mp4"></video>] --> .absolute.r-5.t-30pct[Abandonment] ![Image](abandon.gif# fixed b-2 r-4 w-34pct) <!-- .fixed.b-2.r-4[<video height="400" autoplay><source src="abandon.mp4" type="video/mp4"></video>] --> .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, Ecography</sub></sup></sup>] --- class: # Changes in regional diversity ![Image](div_LU.png# w-80pct) .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, Ecography</sub></sup></sup>] --- class: # Changes in regional diversity .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, Ecography</sub></sup></sup>] ![Image](div_LU2.png# absolute w-40pct center) -- .absolute.l-3.t-5[additive effects] -- .absolute.r-3.t-5[multiplicative effects] --- class: # Change in local diversity ![Image](div-local.png# w-90pct) .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, Ecography</sub></sup></sup>] --- class: # Diversity decomposition - change in **composition** - change in **abundances** .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, Ecography</sub></sup></sup>] -- \\[ ^2D = ^0D \times EF \\] -- \\( ^0D = \\) richness -> beta = compositional turnover \\( EF =\\) evenness factor -> beta = abundances re-arrangement --- class: fit-h1, no-footer # Changes over time, elevation and diversity dimensions ![Image](div-decomp.png) .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, Ecography</sub></sup></sup>] --- class: fit-h1 # Main highlights about the changes in functional diversity .absolute.r-2.b-2[<sub><sup><sup>Boulangeat et al. 2014, Ecography</sub></sup></sup>] -- <br> **Effet of human land-use:** Heterogeneity (beta) in average decreases in case of tree colonization but increases in case of habitat loss **Effect of different PFG assemblages:** The diversity response depends on elevation **Interaction between drivers:** Multiplicative effects are found when land abandonment is combined with climate change --- class: # Limits of DVMs -- 1. Difficult to parameterize 2. Difficult to evaluate error propagation 3. Limited to communities for which there is enough knowledge about constitutive species -- Mechanisms with limited knowledge - mortality and climate change induced mortality - climate change impact on growth or water-use efficiency - seeds (germination) - phenology and shifts - soil processes <!-- ========================================================================== --> --- class: title, smokescreen, no-footer background-image: url(polarbear.png) # Challenges and perspectives --- class: fit-h1 # Scaling issues -- - **space** : modelling dispersal and landscape disturbances -- - **time** : from daily to annual processes -- - **organisational levels** : represent the whole communities <br>(individuals->cohorts->populations->PFG->PFT->community attributes) -- .absolute.r-2.b-30pct[_Biodiversity vs explicit processes,<br> a necessary trade-off_] ![Image](compromise.png# w-60pct) .absolute.r-2.b-2[<sub><sup><sup>Gallien et al. 2010, DID</sub></sup></sup>] --- class: # Modelling dispersal #### Upscaling from individual processes to landscape levels indiv. demography -> pop. demography -> metapopulation dynamics -- 1. Continuity in space and time for model calibration <br> -> inverse modelling/metamodel, resampling, remote sensing data, ... -- 2. Resolution vs extent <br> -> heterogeneity and spread within a cell <sub><sup>see Snell et al. 2014, Ecography</sub></sup> -- 3. Dispersal kernels <br> -> A trait-based parameterisation <sub><sup>see Tamme et al. 2014, Ecology</sub></sup> <br> -> Landscape properties that affect seed dispersal <br> -> Vegetative reproduction --- class:w # Species interactions - Dimension reduction <br>-> Functional groups, using networks to reduce the dimension of interactions -- - Ontology <br>-> A mix between functional groups and age classes? -- - Phenology <br>-> May impact competition for light -- - Interactions (competition and facilitation) via soil ressources (incl. water) <br>-> necessary to improve herbaceous species modelling -- - Trophic interactions <br> ex. plant-pollinisator <br> ex. effect of grazers on seed dispersal and nutrient enrichment --- class: # Response to global changes <br> **Climate change** : impacts on demography <br> -> hybrid approach or inverse modelling? -- **Human practices** : retroactions <br> -> a prospective approach combining stories and simulations? --- class: # Conclusion #### Necessary trade-offs - Species number (or ecological scale) vs explicit processes - Resolution vs extent (space and time) #### Solutions - Multi-scale model integration <sub><sup>see Clark et al. 2009, Ecological Monograph ; Talluto et al. 2016, GEB</sub></sup> - Hybrid approaches (implicit and explicit processes) <sub><sup>see Gallien et al. 2010, DID</sub></sup> --- class: no-footer background-image: url(marais_acide_lautaret.JPG) # Thanks ![Image](irstea300.jpg# absolute b-3 r-3 w-10pct) <br><br><br><br><br><br><br><br><br> Slides can be found at http://iboulangeat.github.io/Slides/ <br> Contact: isabelle.boulangeat@irstea.fr