FATE-HD: A spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale. Boulangeat Isabelle, Georges Damien, Thuiller Wilfried.

Appendix S1 Detailed model description

**SHADING**

The vegetation in each pixel is stratified and the number of strata is a free parameter that can be set according to the vegetation under investigation. The light condition is calculated for each stratum according to the total abundance of the PFGs across all the upper strata and then converted to three classes (shade, half-shade, and full high) according to the respective abundance thresholds: 3,000; 7,000; 10,000. Shade tolerance is given as binary parameters for these three classes. The light conditions influence the germination, recruitment and survival for each PFG depending on its tolerance (see below).

**DEMOGRAPHIC PROCESSES**

**Germination**: For each light class (shade, half-shade, full light), the germination rate of a PFG is given as a proportion of the germination under optimal conditions.

**Recruitment**: Recruitment occurs at a probability given by the habitat suitability and if the light conditions are suitable to the PFG. To determine the number of seedlings, we assume that age-related mortality is equal to recruitment in the best conditions (i.e. when habitat and light conditions are suitable, and considering a balance between the number of dispersed seeds and the seed input). The number of seedlings $S$ in a favorable environment is thus expressed as:

$$ S = \frac{G.A_{max}}{(L - M)}, $$

where $G$ is the number of germinants, $A_{max}$ is the maximum abundance of mature PFG, $L$ the longevity and $M$ the maturity age.

**Growth** is taken into account using a set of fixed parameters that define the ages at which each PFG reaches each pre-defined stratum.

**Survival**: In addition to age-related survival (longevity), a PFG cohort dies when light conditions are no longer favourable.

**Fecundity**: The maximum number of produced seeds is a constant (=10,000) and fecundity only depends on the proportion of mature PFG among the maximum abundance of mature PFG. Fecundity is equal to zero when the habitat is not favorable.
THE INFLUENCE OF HABITAT SUITABILITY

Each year, the habitat (for each PFG in each pixel) is randomly assigned as suitable or unsuitable according to a Bernoulli distribution where parameter $p$ equals the habitat suitability provided by the habitat suitability model. In practice, at each one-year step, a random number is drawn between 0 and 1, according to a uniform law, which gives the threshold to convert all suitability maps of all PFG into binary outputs. The annual variability in environmental conditions thereby affects all PFG in the same way, representing “good” and “bad” years for the vegetation.

SEED DISPERSAL

The seed dispersal model is very fast to compute and gives very similar results to a probabilistic kernel (Fig. S1a). It is based on three parameters: $d_{50}$ is the maximum distance within which 50% of the seeds are dispersed, $d_{99}$ is the maximum distance within which 99% of the seeds are found in total, and $ldd$ is the maximum long distance dispersal. For instance, for $d_{50} = 100m$, $d_{99} = 500m$ and $ldd = 1km$, the seeds available for dispersal will be allocated as follows:

- The central and four nearest neighbor pixels (red pixels, Fig. S1b) each receive 10% of the seeds for a total of 50% of the seeds
- Among the pixels in the first crown (blue pixels, Fig. S1b), six pixels (same number of pixels as in the central disc plus one to give an even number) are randomly chosen by grouping two adjacent pixels and each receives 8.17% of the seeds (see blue pixels marked with a circle, Fig. S1b), which gives a total of 49% of the seeds for the first crown.
- Among the pixels of the second crown (between 500m and 1km), one randomly chosen pixel receives 1% of the seeds

Fig. S1a. Comparison of the proposed seed dispersal algorithm with a probabilistic kernel function. Virtual tree species diffusion was simulated in a landscape of 100x100 cells. The simulation was initialised with four occupied pixels in the landscape. The dispersal parameters correspond to those described above. The habitat is unsuitable in the “FATE” zone only. The density of mature plants is shown every 10 years, from year 30 (left) to 100 (right). The succession parameters correspond to P1 (pioneer trees). In the first line, seed dispersal is modeled using the algorithm presented above. In the second line, seed dispersal is modeled using a negative exponential kernel function parameterised with the corresponding values. The colour scale ranges from red (no abundance) to light green (high abundance).
**Fig. S1b. Neighbouring pixels considered in a short distance dispersal example.** The resolution is 100m. The central pixel is the source. The maximum distance for 50% of the seeds is 100m and determines the position of the circle where 50% of the seeds are uniformly distributed. The maximum distance for 99% of the seeds is 500m, which means that 49% of the seeds end up in the crown between 100 and 500m. The remaining 1% seeds contribute to the long distance dispersal.

![Diagram](image)

**DISTURBANCES**

The effects of each disturbance on the vegetation can be described be using the following parameters:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disturbance frequency</td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>Response age classes thresholds</td>
<td>Year</td>
<td>For each PFG</td>
</tr>
<tr>
<td>Killed plants</td>
<td>Percentage</td>
<td>For each PFG and response age class</td>
</tr>
<tr>
<td>Resprouting plants</td>
<td>Percentage</td>
<td>For each PFG and response age class</td>
</tr>
<tr>
<td>Resprouting ages</td>
<td>Year</td>
<td>For each PFG and response age class</td>
</tr>
<tr>
<td>Actived seeds</td>
<td>Percentage</td>
<td>For each PFG</td>
</tr>
<tr>
<td>Killed seeds</td>
<td>Percentage</td>
<td>For each PFG</td>
</tr>
</tbody>
</table>
**Fig. S1c. FATE Succession model structure.** Within each grid-cell of the study area an independent FATE model object is created. This model object contains the PFGs cohorts from which the available amount of light in each stratum is calculated. In FATE-HD, all FATE model objects are spatially linked to each other through the seed dispersal model.
Fig. S1d. Influence of the three sub-models on the life cycle of each PFG in FATE-HD. Only three age classes are considered: germinant, juvenile and mature. The recruitment is influenced by the habitat suitability and the biotic interactions. Mortality occurs when light conditions are not favorable or when the PFG completes its life span. In addition, the disturbance regime directly affects juvenile or mature PFG and may for instance result in PFG death, impede seed production by reducing mature PFG age to N-1, or revitalize senescents by reducing their age to M-1.
**Fig. S1e. Seed cycle in FATE-HD.** The seed cycle is central in FATE-HD because it is at the crossroads of all sub-models (habitat, disturbance, dispersal and succession). Mature PFG produce seeds in function of the suitability of the habitat in the grid-cell. Seeds are then dispersed and join the active seed pool of the grid-cell where they fall. Disturbance can affect the seed pool by killing seeds or activating dormant seeds (e.g. in fire-disturbed ecosystems). Seed dormancy can be parameterized, and in this case, seeds are aged. Germination rate may vary in function of light conditions.
Fig. S1f. A graphic representation of FATE-HD workflow. The model is presented step by step and as a general overview.

**1. Initialisation**
- **Before the first year:**
  - **Initialisation step**
  - Reading PFG parameters and habitat suitability maps
  - Create a succession model in each grid cell

**What is happening in year n**

**2.a. Save**
- Keep in memory:
  - Abundances of each PFG in each strata

**2.b. Succession step**
- **in each pixel**
  - Each cohort creates a number of seeds
  - Seeds dispersed in the previous year are added to the seed pool
  - A proportion of these seeds germinates as a function of light conditions, and as a function of the habitat suitability of the pixel

**2.c. Recruitment**
- There is a seed pool in each pixel
  - For the same light conditions:
    - Favorable habitat
    - Unfavorable habitat
  - A proportion of these seeds germinates as a function of light conditions, and as a function of the habitat suitability of the pixel

**2.d. Dispersal**
- The transfer of seeds occurs...but they wait for the next year to join the seed pool
- Depending on the abundance of mature plants

End of the cycle!
- Year n+1
- Go to 2.a.: Save previous stage
FATE-HD: A spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale. Boulangéat Isabelle, Georges Damien, Thuiller Wilfried.

Appendix S2 Parameterisation of the PFGs for the sub-models

Succession parameters

The parameterisation of the succession was derived from our own functional traits database, other available databases (LEDA, Knevel et al. 2003; BioFlor, Kühn et al. 2004; Flora Indicativa, Landolt et al. 2010), expert knowledge from the Ecrins National park, and the literature. For each PFG, the average value (for continuous traits) or median category (for ordinal traits) was calculated for life span, maturity age, and shade tolerance, were determined across the determinant PFG species.

We defined five height strata in our study (0-1.5m; 1.5-4m; 4-10m; 10-20m; above 20m). In the model, light resources in each stratum are converted from the sum of PFG abundances in the upper strata at three fixed levels (full light under abundance 3,000; half-shade from 3,000 to 7,000 and shade above 7000). Maximum shade in a pixel (corresponding to a number of individuals) was thereby determined according to the number of strata potentially occupied by a PFG, assuming that a tree occupying several strata can create more shade than herbaceous cover. Maximum shade is a semi-quantitative parameter that can take only three values: 3,000; 7,000; or 10,000. It was set to 3,000 for PFGs which remain in the first stratum only, to 7,000 for PFG which can reach the second stratum, and to 10,000 for taller PFGs. The relative shade of immature plants has been set to 100% for herbaceous, 50% for small trees or shrubs and 10% for taller trees. Trees and shrubs’ height strata were determined according to their age using a growth rate equation involving maturity age, life span, relative shade of immature, and maximum plant canopy height (Eq. S2). Relative germination performance was chosen from seven propositions (0; 10; 40; 50; 80; 90; 100%) with the aim of decreasing germination performance in response to increasing shade for herbaceous plants, and ensuring the germination performance of woody plants is unaffected by light conditions, according to the results obtained by Milberg et al. (2000). Seed dormancy was ignored.

Tab.S2a. Succession parameters table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>H1</th>
<th>H10</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
<th>H6</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity age (year)</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Life span (year)</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum shade</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>Relative shade of immature vs mature plants (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Age to reach stratum 2 (1.5m)</td>
<td>10000</td>
</tr>
<tr>
<td>Age to reach stratum 3 (4m)</td>
<td>10000</td>
</tr>
<tr>
<td>Age to reach stratum 4 (10m)</td>
<td>10000</td>
</tr>
<tr>
<td>Age to reach stratum 5 (20m)</td>
<td>10000</td>
</tr>
<tr>
<td>Relative germination performance in the shade</td>
<td>50%</td>
</tr>
<tr>
<td>Relative germination performance in half-shade</td>
<td>80%</td>
</tr>
<tr>
<td>Relative germination performance in full light</td>
<td>90%</td>
</tr>
<tr>
<td>Tolerance of germinants to shade</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Tolerance of germinants to half-shade</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance of germinants to full light</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance of immature plants to shade</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance of immature plants to half-shade</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance of immature plants to full light</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance of mature plants to shade</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Tolerance of matures to half-shade</td>
<td>yes</td>
</tr>
<tr>
<td>Tolerance of matures to full light</td>
<td>yes</td>
</tr>
<tr>
<td>Percentage of seeds that died each year</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed dormancy</td>
<td>no</td>
</tr>
<tr>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>P5</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>Maturity age (year)</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Life span (year)</td>
<td>27</td>
<td>19</td>
<td>45</td>
<td>158</td>
<td>39</td>
<td>92</td>
<td>193</td>
<td>177</td>
<td>351</td>
<td>600</td>
</tr>
<tr>
<td>Maximum shade</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>7000</td>
<td>3000</td>
<td>3000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>Relative shade of immature vs mature plants (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Age to reach stratum 2 (1.5m)</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10</td>
<td>10000</td>
<td>10000</td>
<td>10</td>
<td>3</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Age to reach stratum 3 (4m)</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>30</td>
<td>9</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>Age to reach stratum 4 (10m)</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>136</td>
<td>10000</td>
<td>79</td>
<td>37</td>
</tr>
<tr>
<td>Age to reach stratum 5 (20m)</td>
<td>10000</td>
</tr>
<tr>
<td>Relative germination performance in the shade</td>
<td>90%</td>
</tr>
<tr>
<td>Relative germination performance in half-shade</td>
<td>90%</td>
</tr>
<tr>
<td>Tol. of germinants to shade</td>
<td>yes</td>
</tr>
<tr>
<td>Tol. of germinants to half-shade</td>
<td>yes</td>
</tr>
<tr>
<td>Tol. of germinants to full light</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Tol. of immature plants to shade</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Tol. of immature plants to half-shade</td>
<td>yes</td>
</tr>
<tr>
<td>Tol. of immature plants to full light</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Tol. of mature plants to shade</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Tol. of mature plants to half-shade</td>
<td>yes</td>
</tr>
<tr>
<td>Tol. of mature plants to full light</td>
<td>yes</td>
</tr>
<tr>
<td>% of seeds that died each year</td>
<td>0</td>
</tr>
<tr>
<td>Seed dormancy</td>
<td>no</td>
</tr>
</tbody>
</table>

**Eq. S2. Growth.** $H$ (height) is expressed as a function of $A$ (age).

$$H = H_{\text{max}} \cdot (1 - \exp(-k \cdot A))$$

where $H_{\text{max}}$ is the canopy height and $k = \frac{1}{2} \log(1 - H_{\text{imm}})$ with $H_{\text{imm}}$ as the relative size of immature versus mature plants and $A_{\text{mat}}$ the maturity age.
**Tab. S2b Dispersal parameters.** A dispersal class was given to each species of the study area according to the methodology proposed by Vittoz *et al.* (2007). This classification is based on the most efficient dispersal mode and takes into account plant dispersal attributes, distinguishing seven ordinal classes. For each PFG, the dispersal distance class was given by the median dispersal distance class of its determinant species. For each dispersal class, the two first distance parameters were estimated in Vittoz *et al.* (2007) and are reported below. They correspond to the upper limits of the distances within which 50% and 99% of the seeds of a PFG cohort within a pixel are dispersed. The long dispersal distance was set to 1km for classes 1 to 3, 5km for the classes 4 and 5 and 10km for classes 6 and 7, as proposed in Engler & Guisan (2009).

<table>
<thead>
<tr>
<th>PFG</th>
<th>Dispersal class</th>
<th>Maximal distance for 50% of seeds (m)</th>
<th>Maximal distance for 99% of seeds (m)</th>
<th>Long distance dispersal (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>6</td>
<td>400</td>
<td>1500</td>
<td>10000</td>
</tr>
<tr>
<td>C2</td>
<td>4</td>
<td>40</td>
<td>150</td>
<td>5000</td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>C4</td>
<td>6</td>
<td>400</td>
<td>1500</td>
<td>10000</td>
</tr>
<tr>
<td>C5</td>
<td>6</td>
<td>400</td>
<td>1500</td>
<td>10000</td>
</tr>
<tr>
<td>C6</td>
<td>7</td>
<td>500</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>H1</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>1000</td>
</tr>
<tr>
<td>H10</td>
<td>7</td>
<td>500</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>H2</td>
<td>6</td>
<td>400</td>
<td>1500</td>
<td>10000</td>
</tr>
<tr>
<td>H3</td>
<td>7</td>
<td>500</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>H4</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>1000</td>
</tr>
<tr>
<td>H5</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>1000</td>
</tr>
<tr>
<td>H6</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>1000</td>
</tr>
<tr>
<td>H7</td>
<td>5</td>
<td>100</td>
<td>500</td>
<td>5000</td>
</tr>
<tr>
<td>H8</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>1000</td>
</tr>
<tr>
<td>H9</td>
<td>7</td>
<td>500</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>P1</td>
<td>6</td>
<td>400</td>
<td>1500</td>
<td>10000</td>
</tr>
<tr>
<td>P2</td>
<td>5</td>
<td>100</td>
<td>500</td>
<td>5000</td>
</tr>
<tr>
<td>P3</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>1000</td>
</tr>
<tr>
<td>P4</td>
<td>6</td>
<td>400</td>
<td>1500</td>
<td>10000</td>
</tr>
<tr>
<td>P5</td>
<td>6</td>
<td>400</td>
<td>1500</td>
<td>10000</td>
</tr>
<tr>
<td>P6</td>
<td>4</td>
<td>40</td>
<td>150</td>
<td>5000</td>
</tr>
<tr>
<td>P7</td>
<td>4</td>
<td>40</td>
<td>150</td>
<td>5000</td>
</tr>
<tr>
<td>P8</td>
<td>4</td>
<td>40</td>
<td>150</td>
<td>5000</td>
</tr>
</tbody>
</table>
Disturbance parameters

**Tab. S2c Response to mowing.** The parameterisation was carried by the experts of the National Park. Mowing was assumed to include the removal of all trees in the field.

<table>
<thead>
<tr>
<th>Herbageous</th>
<th>Chamaephytes</th>
<th>Phanerophytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juveniles were unaffected</td>
<td>One year old individuals were not affected</td>
<td>Trees above 1.5m were all killed, assuming that mowing is associated with destruction of trees</td>
</tr>
<tr>
<td>Senescents (longevity – 2) were all killed</td>
<td>Senescents (longevity – 2) were all killed</td>
<td></td>
</tr>
</tbody>
</table>

**Tab. S2d Response to grazing for herbaceous and herbaceous chamaephytes.** C3, C5, H4, H7 and H8 were unaffected. 3 different types of grazing were differentiated: G1= light grazing; G2= extensive grazing; G3= intensive grazing. The parameterisation was carried out with PNE experts and according to the palatability of the determinant species of each PFG (Jouglet et al.)

<table>
<thead>
<tr>
<th>PFG</th>
<th>Mature plants that did not produce seeds</th>
<th>Mature plants that were killed</th>
<th>PFG</th>
<th>Mature plants that did not produce seeds</th>
<th>Mature plants killed</th>
<th>PFG</th>
<th>Juveniles of one year that were killed</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>50%</td>
<td>C1 50%</td>
<td>P1</td>
<td>80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>90%</td>
<td>C2 50%</td>
<td>P2</td>
<td>80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>90%</td>
<td>C3 100%</td>
<td>P3</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>-</td>
<td>C4 100%</td>
<td>P4</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td>90%</td>
<td>C5 100%</td>
<td>P5</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H6</td>
<td>50%</td>
<td>C6 100%</td>
<td>P6</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>50%</td>
<td>-</td>
<td>P7</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>50%</td>
<td>-</td>
<td>P8</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H9</td>
<td>90%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H10</td>
<td>90%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Tab. S2e Response to grazing for phanerophytes and shrub chamaephytes.** 3 different types of grazing were differentiated: G1= light grazing; G2= extensive grazing; G3= intensive grazing. Individuals above 1.5m were unaffected. Percentages represent the proportion of killed plants.

<table>
<thead>
<tr>
<th>Age classes</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 1 year old</td>
<td>100%</td>
<td>100%</td>
<td>80%</td>
<td>100%</td>
<td>0%</td>
<td>-</td>
<td>40%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>&lt;1.5m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>40%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>G2 1 year old</td>
<td>100%</td>
<td>100%</td>
<td>80%</td>
<td>100%</td>
<td>-</td>
<td>-</td>
<td>40%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>&lt;1.5m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G3 1 year old</td>
<td>100%</td>
<td>100%</td>
<td>80%</td>
<td>100%</td>
<td>40%</td>
<td>100%</td>
<td>40%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>&lt;1.5m</td>
<td>40%</td>
<td>40%</td>
<td>10%</td>
<td>80%</td>
<td>10%</td>
<td>40%</td>
<td>-</td>
<td>-</td>
<td>40%</td>
</tr>
</tbody>
</table>
References


Appendix S3 Habitat suitability models

Calibration area

The habitat suitability models were calibrated over the whole French Alps (see Fig. 1 in the main text). We thus hope to better capture the potential niche of each plant functional group to then be able to project it onto our study area, the Ecrins National Park (Barbet-Massin et al. 2012).

From vegetation relevés to PFG presence-absence

We used the vegetation database from the Conservatoire Botanique National Alpin (CBNA), which has records of more than 3 million occurrences of plant species in the French Alps and 15,000 community plots for which the exhaustive list of species was recorded together with cover abundances (Braun-Blanquet, 1946). All records older than 1980 were excluded as well as ones made by unknown botanists and spatially inaccurate plots (uncertainty > 200m). Species nomenclature was standardised according to the *Index synonymique de la flore de France* (Kerguélen, 1993).

We considered a PFG to be present where at least one of its representative species was observed. A community plot (complete survey) where none of its determining species were observed was considered to be a true absence. In this way, we built presence-absence data for each PFG.

Environmental variables

We used seven environmental variables to model the large-scale abiotic constraints for each PFG.

- **The slope angle**, taken from the French Digital Elevation Model with 50x50m resolution, made by the IGN-France (http://professionnels.ign.fr/bdalti)

- **The percentage of calcareous soil** was calculated from the European Soil Database [http://eusoils.jrc.ec.europa.eu/data.html](http://eusoils.jrc.ec.europa.eu/data.html) with a 1km resolution. We calculated the percentage of the area of Soil Typological Units (STU) with calcareous dominant parent material for every Soil Mapping Unit (SMU) within the borders of the Alpine range (see also Dullinger et al. 2012).

- **Five bioclimatic variables** (isothermality, temperature seasonality, temperature annual range, mean temperature of coldest quarter, and annual precipitation). We selected these five variables because they are known to influence the physiology of species in the Alps (Körner 2004) and their pairwise correlations were low. Temperature and precipitation maps were downscaled to a resolution of 100m, from the 1 km Worldclim climate grids.
available online, using a specific method that was developed to represent the topographic variation of climate in Mountainous areas better (Dullinger et al. 2012).

**Building the habitat suitability models**

All models were built using the biomod2 package (Thuiller et al. 2009) in R (2011). Amongst the available algorithms, we selected five different ones using default settings: Generalized Linear Model, Boosted Regression Trees, Generalized Additive Model, Multivariate Adaptive Regression Splines and Random Forest. We selected the algorithms which are known to provide good predictions and which encompass the different families available in the field.

In order to compare the habitat suitability of all PFG, we made sure that equal weightings were given to the presences and absences for each PFG. We thus weighted the presence and absence of each PFT in the modelling procedure to give a prevalence of 0.5. This ensured that the models were comparable, one to another, whatever the PFG distribution (narrow, wide spread, etc.).

The models were calibrated using a random data sample (70%) and evaluated using the remaining 30% with True Skill Statistics (TSS, Allouche et al. 2006). The whole cross-validation process was repeated 10 times.

**Ensemble Forecasting**

We used an ensemble forecasting strategy to derive the probability of occurrence (i.e. habitat suitability value) for each PFG across the national park using the following method: (1) All models were used to project the potential habitat suitability for each PFG; (2) We transformed the probabilities of presence into presences and absences using the threshold which maximised the TSS in the evaluation procedures. (3) We calculated the sum of all binary projections weighted according to their TSS score. (4) We rescaled the projection to fall between 0 and 1. This latter projection gives the habitat suitability map for each PFG (Figure S3). This ensemble forecast gives the percentage of agreement between the different algorithms and the different cross-validation datasets for predicting a presence. The higher the value, the more plausible the presence.

**BIBLIOGRAPHY**


**Figure S3. Habitat suitability map for each PFG.** The following set of figures represents the habitat suitability under current conditions for (a) Herbaceous, (b) Phanerophyts and (c) Chamaephyts. The habitat suitability varies from 0 (unsuitable area, light grey) to 1 (high suitability, green). The interpretation of each PFG is given in Tab. 2 (main text).
FATE-HD: A spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale. Boulangeat Isabelle, Georges Damien, Thuiller Wilfried.

Appendix S4 PFGs to vegetation types correspondence table

<table>
<thead>
<tr>
<th>Broad category</th>
<th>Habitat type</th>
<th>Name of the vegetation type</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
<th>H6</th>
<th>H7</th>
<th>H8</th>
<th>H10</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpine habitats</td>
<td>Snow packs</td>
<td>Snow pack with mosses</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Snow pack</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Snow-covered grassland</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alpine grasslands</td>
<td>Sparse grassland</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dense alpine grassland</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heathland with Vaccinium uliginosum</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alpine calcareous crests</td>
<td>Alpine crests</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alpine slopes</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crest’s dwarf-shrub heathland</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alpine silicious crests</td>
<td>Siliceous sunny slope</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siliceous north slope</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dwarf-shrub heathland</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>North slope subalpine habitats</td>
<td>Cold megaphorbia and alder bush</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eriaceous heathland</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dwarf-shrub heathland without trees</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sunny slope subalpine habitats</td>
<td>Mesotherm megaphorbia and segde meadow</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open heathland</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Closed heathland</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wooded heathland</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>White birch (Betula alba) forest</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naturally disturbed subalpine habitats</td>
<td>Calicolicous vegetation</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Junipers’ heathland</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wooded heathland with Vaccinium myrtillus</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wooded heathland without Vaccinium myrtillus</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heathland under larch forest</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
|                | Deciduous forest stand | 0   | 1   | 1   | 1   | 0   | 1   | 1   | 0   | 0   | 1   | 0   | 0   | 0   | 1   | 1   | 2   | 2   | 2   | 0   | 1   | 1   | 2   | 2
<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature north slope mountainous forest habitats</td>
<td></td>
</tr>
<tr>
<td>Herbaceous forest vegetation</td>
<td>0 1 1 2 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Field margin</td>
<td>0 2 1 2 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Softwood planting</td>
<td>0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 2 2 2 0 0 0</td>
</tr>
<tr>
<td>Logged forest</td>
<td>0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Fir beech forest</td>
<td>0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 2 0 1 0 0</td>
</tr>
<tr>
<td>Sunny slope mountainous forests</td>
<td></td>
</tr>
<tr>
<td>Bushy pine forest</td>
<td>0 1 1 1 1 1 0 0 0 1 1 0 0 2 0 0 1 1 1 1 1 0 1 1 0</td>
</tr>
<tr>
<td>Mountainous larch forest</td>
<td>0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 2 1 0 1 0</td>
</tr>
<tr>
<td>Deciduous tree forest on former agricultural land</td>
<td>0 1 1 1 1 1 0 0 0 1 1 0 0 2 0 0 1 1 1 2 1 1 1 0</td>
</tr>
<tr>
<td>Mixed spruce forest</td>
<td>0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 2 1 1 0 0</td>
</tr>
<tr>
<td>Pure spruce forest (internal Alps)</td>
<td>0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 2 0 0 0</td>
</tr>
<tr>
<td>Pine forest</td>
<td>0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0</td>
</tr>
<tr>
<td>Mixed larch forest</td>
<td>0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 2 0 1 1 0</td>
</tr>
<tr>
<td>Larch planting</td>
<td>0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 2 1 0 1 0</td>
</tr>
<tr>
<td>Sunny slope mountainous forests</td>
<td></td>
</tr>
<tr>
<td>Bushy pine forest</td>
<td>0 0 0 1 1 0 0 0 0 0 1 0 0 2 1 0 1 1 1 0 0 1 1 0</td>
</tr>
<tr>
<td>Pioneer forest</td>
<td>0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 2 1 2 0 0 0 0 1</td>
</tr>
<tr>
<td>Forest without fir (Abies alba)</td>
<td>0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 0</td>
</tr>
<tr>
<td>Grazed pine forest</td>
<td>0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 2 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Montainous open habitats</td>
<td></td>
</tr>
<tr>
<td>Sunny slope mountainous open habitats</td>
<td></td>
</tr>
<tr>
<td>Sunny slope mountainous grassland</td>
<td>0 1 0 0 2 1 0 0 0 0 2 0 0 1 1 1 1 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Low heathland</td>
<td>0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 2 1 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Low shrubbery (after brush cut)</td>
<td>0 0 1 1 1 1 0 0 0 1 1 0 0 2 0 0 1 1 1 0 0 0 0 0</td>
</tr>
<tr>
<td>Alpine grazed grasslands</td>
<td></td>
</tr>
<tr>
<td>Dense grassland</td>
<td>2 1 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Prickly dense grassland</td>
<td>2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Overgrewen scree</td>
<td>1 1 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Livestock resting place</td>
<td>1 2 1 1 0 1 0 1 0 2 1 0 0 1 0 0 0 0 1 0 0 0 0 0</td>
</tr>
<tr>
<td>Nutrient rich subalpine grazed grasslands</td>
<td></td>
</tr>
<tr>
<td>Grazed nutrient rich grassland</td>
<td>2 1 2 0 1 2 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Fertilized nutrient rich grassland</td>
<td>2 1 2 0 1 2 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Abandoned livestock resting place</td>
<td>1 2 1 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Nutrient poor subalpine grazed grasslands</td>
<td></td>
</tr>
<tr>
<td>Sparse grassland with drailles (cattle track)</td>
<td>2 1 1 0 2 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Dense grassland with drailles</td>
<td>2 1 1 0 2 0 0 1 2 0 2 0 0 0 0 2 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Nard grassland</td>
<td>1 1 0 0 1 0 0 1 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Late mown meadow</td>
<td>0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Mown meadows</td>
<td>0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Abandoned or sparsely grazed meadows</td>
<td></td>
</tr>
<tr>
<td>Abandoned meadow</td>
<td>0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Grazed meadows</td>
<td>0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Lowlands</td>
<td>Rocky habitats</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Colline shrublands</td>
<td>Rocky habitats</td>
</tr>
<tr>
<td>Pionner vegetation after land abandonment</td>
<td>0 0 1 0 0 0 0 0 0 1 1 0 0 2 1 0 1 1 1 0 0 0 0 0</td>
</tr>
<tr>
<td>Deciduous colline forest without oak</td>
<td>0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0</td>
</tr>
<tr>
<td>Oak forest</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Supramediterranean vegetation</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Supramediterranean forest</td>
<td>0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Brome's grassland</td>
<td>0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Dry grassland with Stippa</td>
<td>0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Supramediterranean grassland</td>
<td>0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Lowlands' dry grasslands</td>
<td>0 0 0 0 1 0 0 0 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0</td>
</tr>
<tr>
<td>Rock wall and fallen rocks</td>
<td>1 1 0 0 1 0 2 0 0 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0</td>
</tr>
<tr>
<td>Scree's edge and flat rocks</td>
<td>1 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Gravel pit</td>
<td>0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0</td>
</tr>
<tr>
<td>Recent mountainous scree</td>
<td>1 1 0 0 1 0 2 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0</td>
</tr>
<tr>
<td>Alpine scree</td>
<td>2 0 0 0 0 0 1 1 0 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Alpine scree</td>
<td>2 0 0 0 0 0 1 1 0 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
Appendix S5 Initialization
Fig. S5a Evolution of PFG distribution areas as a function of time during seeding. Vertical orange dotted line indicates 150, 300 and 600 years after the beginning of the simulation. After 300 years, we can consider a quasi-equilibrium for all PFGs.
Fig. S5b Evolution of PFG distribution areas as a function of time after seeding stopped. Vertical orange dotted line indicates 150 and 300 years after seeding stop. After 500 years, we can consider a quasi-equilibrium.
Fig. S5c Evolution of PFG distribution areas as a function of time after seeding stopped. Vertical black lines indicate the cut of all trees. Orange dotted line delineates the window where outputs were recorded.