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Abstract

Ecosystems respond in various ways to disturbances. Quantifying ecological stability therefore
requires inspecting multiple stability properties, such as resistance, recovery, persistence and
invariability. Correlations among these properties can reduce the dimensionality of stability, sim-
plifying the study of environmental effects on ecosystems. A key question is how the kind of dis-
turbance affects these correlations. We here investigated the effect of three disturbance types
(random, species-specific, local) applied at four intensity levels, on the dimensionality of stability
at the population and community level. We used previously parameterized models that represent
five natural communities, varying in species richness and the number of trophic levels. We found
that disturbance type but not intensity affected the dimensionality of stability and only at the pop-
ulation level. The dimensionality of stability also varied greatly among species and communities.
Therefore, studying stability cannot be simplified to using a single metric and multi-dimensional
assessments are still to be recommended.
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INTRODUCTION

Understanding the response of populations, communities, and
ecosystems to fast, human-induced environmental changes is a
key challenge (Carpenter et al. 2011; Higgins & Scheiter 2012;
Scheffer et al. 2015; De Laender et al. 2016). However, quan-
tifying the stability of natural systems is challenging because
stability is a multidimensional concept and requires measuring
several stability properties such as resistance, recovery, persis-
tence, and invariability (see Glossary, Pimm 1984; Grimm &
Wissel 1997; Donohue et al. 2016). Correlation among these
properties manifests the dimensionality of stability (DS): if the
stability properties strongly correlate, the dimensionality is
low, and vice versa (Donohue et al. 2013; Hillebrand et al.
2018, Fig. 1a and b). Theory underpinning DS is still in its
infancy (Donohue et al. 2013) and relevant empirical evidence
is only beginning to accumulate (Donohue et al. 2013; Hille-
brand et al. 2018). A key question is whether DS depends on

the kind of underlying disturbance. Donohue et al. (2013)
showed that when disturbed by consumer removal, DS
increased in marine shore communities. At present it is
unclear if such conclusions can be extrapolated to other kinds
of disturbance.
There are many kinds of disturbance. Disturbance proper-

ties include: duration, spatial extent, intensity, frequency and
type (Turner 2010). According to their duration, two extreme
classes of disturbance can be distinguished: pulse disturbances
(e.g. fire or flooding) occur over a short time scale, relative to
the typical speed at which a system changes, and press distur-
bances (e.g. global warming or exploitation) represent a con-
stant, long-term change. Disturbance intensity reflects how
much individuals/biomass are affected by an event over a per-
iod of time (Turner 2010). Disturbance frequency reflects how
often disturbance events occur within a given time period.
Examples of disturbance types are local vs. global, and selec-
tive vs. non-selective disturbances (De Laender et al. 2016).
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Despite increasing understanding of how disturbances affect
each single stability property, we know little of how the kind
of disturbance affects the relationships among multiple stabil-
ity properties, i.e., the dimensionality of stability (Donohue
et al. 2013). Yet, such knowledge is crucial for guiding efforts
to monitor and manage natural systems. Indeed, if several sta-
bility properties correlate strongly irrespective of the proper-
ties of disturbances acting on them, the stability of the overall
system reduces to one dimension (i.e. low DS, Fig. 1a). This
means that monitoring schemes could be optimized by quanti-
fying only a few stability properties. Alternatively, if a sys-
tem’s stability properties are poorly correlated (i.e. high
dimensionality), inferring the system’s overall stability requires
measuring all properties (Fig. 1b). Therefore, management of
natural systems would profit from knowing how DS is influ-
enced by different disturbance properties. For example, an
increase of dimensionality with disturbance intensity would
undermine the main assumption for detecting tipping points
(Dakos et al. 2012; Dai et al. 2015) through early warning sig-
nals (e.g., coefficient of variation, temporal autocorrelation),
which usually manifest the variability of a system.
DS can be decomposed into pair-wise correlations among

underlying stability properties (Donohue et al. 2013; Hille-
brand et al. 2018; Pennekamp et al. 2018). We generally
expect positive pair-wise correlations between invariability,
resistance, recovery and persistence. For example, at the pop-
ulation level, invariability and persistence are expected to cor-
relate positively, because the higher the temporal constancy in
population size, the more likely the population is to persist
(Ginzburg et al. 1982; Inchausti & Halley 2003). Similarly, at
the community level, the higher the temporal constancy in
community composition, the more likely this community is to
persist in its unchanged state. For arguments of why we
expect other stability properties to correlate positively, see
Table S1 in Supporting Information. Because pair-wise corre-
lations are ‘constituents’ of DS, they are expected to depend
on the same factors as DS: disturbance properties and the
level of organization. Indeed, the sign of a pair-wise correla-
tion between stability properties was shown to change when,
instead of a single disturbance, two disturbance types were
applied simultaneously to yeast populations (Dai et al. 2015).
Also, pair-wise correlations measured at the community and
ecosystem level differed in plankton communities disturbed
by reduced light availability (Hillebrand et al. 2018).

Understanding whether pair-wise correlations are affected
similarly across different disturbance types and study systems
would facilitate more efficient monitoring of the stability of
natural systems.
Here, we used process-based, spatially-explicit models to

assess how the intensity and the type of disturbance affect DS
at the population and community levels. Our models are well-
tested and structurally realistic, and represent five different
communities: a species-rich temperate grassland community, a
temperate forest, an algae community, a boreal predator-prey
system, and a host-pathogen system. The modelled communi-
ties varied in species richness (2 up to 86 species) and number
of trophic levels (one or two). At both levels of organization
we measured four stability properties: resistance, recovery,
persistence and invariability (Glossary, Fig. 2a–c, Table S2).
We applied three disturbance types at four intensities. We dis-
tinguished disturbances that (1) affect individuals selectively
depending on their species identity, (2) affect individuals selec-
tively depending on their location, and (3) affect all individu-
als similarly, irrespective of species identity or location
(Fig. 2d,e and f). We tested the following hypotheses:

H1: At each level of organization, DS depends on distur-
bance type and intensity.

H2: All investigated stability properties exhibit positive pair-
wise correlations (Table S1).

H3: At each level of organization, the pair-wise correlations
depend on disturbance type and intensity.

METHODS

Study systems

We used models representing the dynamics of the following
communities: temperate forests (Bohn et al. 2014), a marine
algal community (Baert et al. 2016a), a species-rich temperate
grassland (May et al. 2009), a boreal predator-prey system of
mustelids and voles (Radchuk et al. 2016a), and a temperate
host-pathogen system of classical swine fever (CSF) virus affect-
ing wild boar populations (Kramer-Schadt et al. 2009; Lange
et al. 2012). All of these models had previously been parameter-
ized to mimic the conditions of the respective natural
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Figure 1 Schematic representation of the dimensionality of stability. (a and b) Hypothetical multidimensional ellipsoids reflecting systems with low (a,

black) and high (b, brown) dimensionality, and their respective semi-axis lengths (c), reflecting the amount of variation along each axis. The axes are

ranked from the one that explains most variation to the one with the least variation (Donohue et al. 2013).
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communities (Table S3). All models have three aspects in com-
mon: (1) they are spatially explicit, describing the location of
habitat patches and movement of individuals among them; (2)
they include demographic stochasticity; and (3) the smallest
modelled entity is the individual (except for the model simulat-
ing an algae community, which is based on Lotka-Volterra
equations with a dispersal component; Text ST1). In addition
to demographic stochasticity, two models (a host-pathogen
model and a model of temperate forests) also include environ-
mental stochasticity. Temperate grassland was modelled in two
ways: using the original IBC-grass model (May et al. 2009) and
a modified version that incorporates intraspecific trait variation
(from now on referred to as Grassland ITV, Crawford et al.
2018). We thus used six models that represented five study sys-
tems. An advantage of using models that have been previously
developed is that those models have already been tested and
verified for natural systems. We provide short summaries of the
main processes included in each model in the Supplementary
Methods, and more detailed descriptions of the models in the
Supplementary Texts T1-T5.

Disturbances

The previously published versions of the models, parameterized
to reflect a stochastic quasi-equilibrium state (Nolting & Abbott
2016), were used as a control (no disturbance). We implemented
disturbance as a one-time (pulse) removal of individuals. We
implemented three types of disturbance (Fig. 2d, e, and f): ran-
dom disturbance affected individuals randomly, irrespective of
their species identity and location. This disturbance type reflects

a non-selective disturbance (De Laender et al. 2016). The rare
species removal disturbance reflects the assumption that the rar-
est species are most extinction-prone (Solan et al. 2004) and is
applied to species inversely to their population abundance
ranks. This disturbance type was not possible in the wild boar –
virus model (Supplementary Methods). The spatially-structured
disturbance mimicked a localized disturbance by randomly
selecting a point for the centre of the disturbance and then grad-
ually increasing the disturbance radius around this point until
the disturbance affected the target number of individuals (as
defined by the disturbance intensity). We have implemented dis-
turbance types via removal of individuals because this is a gen-
eric process that is inherent to several real-world disturbances,
such as habitat fragmentation, hunting, culling and pollution.
Using removal of individuals allows for comparability of results
among the models as they differ in their processes. Therefore,
removal of individuals was the best compromise among the rel-
evance of the disturbance type and comparability of results
among the systems.
Each disturbance type was implemented at four intensities,

reflecting increasing proportions of the community that were
removed (0.1, 0.2, 0.3 and 0.4, respectively). An upper bound
of intensity was chosen via preliminary tests scanning a larger
range of intensities, which showed that at a disturbance inten-
sity > 0.5, all species in our 2-species systems went extinct,
complicating the measurements of all stability properties.
We ensured the comparability of the results in terms of the

temporal scales among our study systems by scaling the dura-
tion of the simulation runs to the average generation length
of all the species in the community (Pimm 1984). We used 30

Figure 2 (a–c) Four stability properties measured at the community (a) and population (b and c) level in this study. Red vertical dashed line highlights the

time step at which the disturbance (= treatment) occurs (for demonstration purpose here generation 4). Resistance (Res) and recovery (Rec) at the

community level are measured as BC Compt
Compc

� �
, where BC is Bray–Curtis similarity, and Compx is community composition in either control (x = c) or

treatment (x = t), measured at the time steps indicated by green (Res) and blue (Rec) vertical dashed lines, respectively. Resistance and recovery at the

population level are measured as ln Abt
Abc

� �
, where Abx is abundance in either control (x = c) or treatment (x = t), measured at the time steps indicated by

green (Res) and blue (Rec) vertical dashed lines, respectively. The grey solid line depicts a fitted model that is used to assess invariability (Inv), for

demonstration purpose only two residuals are highlighted. An orange arrow shows how (a) T0.9 at the community level and (c) TTE (time to extinction) at

the population level are obtained. Persistence at the population level is calculated as: Percpop ¼ TTE
Tmax

; and at the community level: Perccom ¼ T0:9

Tmax
, where Tmax

is the maximum duration (here 16 generations) (for more details see Methods and Table S2). (d–f). Disturbance types used in this study: random (d), rare

species removal (e) and spatially-structured disturbance (f). Each disturbance type is shown at 20% disturbance intensity. A two-patch system is depicted

with each symbol representing an individual and the shape reflecting the species identity. Empty symbols indicate the individuals that would be removed

under each disturbance. A circle in (f) shows a radius of a spatially-structured disturbance type.
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average generations of the control as a ‘burn-in’ phase, after
which either the control or one of the disturbance type scenar-
ios were run for the next 60 generations, which was enough
for majority of the species to attain either previous or a new
stochastic quasi-equilibrium state (based on Gelman-Rubin
diagnostics, Figs S1–S3, Supporting Information Methods).
The disturbance was applied in the first time step immediately
after the ‘burn-in’ phase. We ran 30 replicates of each of the
13 scenarios (the control plus three disturbance types crossed
with four levels of disturbance intensity) to account for the
stochasticity inherent in the models. These 30 replicates were
sufficient to capture effects that are due to disturbances and
not merely a result of stochasticity (Supporting Information
Methods and Figs S4-S7). The ‘burn-in’ phase was discarded
when calculating the stability properties.

Stability properties

At both the community and population level, we quantified
four stability properties: resistance, recovery, persistence and
invariability (Glossary, Fig. 2a–c, Table S2). We quantified
stability properties analogously at both levels of organization.
At the community level as state variable we used community
composition, and at the population level we used abundance.
We here detail how stability properties were measured at the
community level, for details on how it was done at the popu-
lation level please refer to Supporting Information Methods.
Resistance was measured as Bray-Curtis similarity of the

community composition between treatment and control at the
first sampling after treatment (time step 1, Hillebrand et al.
2018). Resistance ranges between 0 and 1 with 1 reflecting
maximum resistance (100% similarity between treatment and
control). Recovery reflects the degree of restoration of the sys-
tem at the end of the time series and was measured as Bray–
Curtis similarity of the community composition between treat-
ment and control at the final sampling (time step 60, Hille-
brand et al. 2018). Similarly to resistance values, the recovery
values range between 0 and 1, with 1 reflecting a full recovery.
Persistence was measured as the time during which the com-
munity composition in a treatment remains within 90% of the
Bray–Curtis similarity with the composition of the control
community. We scaled the original persistence values (min =
1, max = 60) by dividing them by their theoretically possible
maximum (60), so that persistence ranges from 0 (the similar-
ity between the treatment and control is < 0.9 in the first time
step) to 1 (maximum persistence, a system remains within
90% of similarity during the whole period). Temporal invari-
ability (Wang et al. 2017) was measured as the inverse of stan-
dard deviation of residuals from the linear model regressing
the Bray–Curtis similarity between the treatment and control
communities on time (Hillebrand et al. 2018). When temporal
invariability is higher, i.e., when community composition fluc-
tuates less around the average trend, the stability is higher. In
Supplementary Methods we explain the choice of (1) Bray–
Curtis similarity as a particularly suitable state variable for
measuring stability at the community level (Donohue et al.
2013; Hillebrand et al. 2018) and (2) the threshold of 90% of
Bray–Curtis similarity to measure persistence.

Dimensionality of stability

We quantified DS using multidimensional ellipsoids based on
the covariance matrices among all stability properties (Donohue
et al. 2013). The covariance matrices were constructed using the
30 replicates per scenario (at the community level) and per spe-
cies nested within each scenario (at the population level). Since
disturbances may affect both the volume and the shape of such
ellipsoids (Donohue et al. 2013, Fig. 1a–c), we considered both.
We used semi-axis lengths to characterize the shape of ellipsoids.
The semi-axis length ai was measured as ai ¼ k0:5i , where ki is the
ith eigenvalue of the covariance matrix for a given scenario (i.e. a
combination of the disturbance type and intensity) at the com-
munity level and for each species within each scenario at the
population level. Ellipsoid volume was calculated as

V ¼ pn=2

C n
2þ1ð Þ

Qn
i¼1

k0:5
� �

, where n is the dimensionality of the covari-

ance matrix. Prior to the calculation of the ellipsoid volume,
each set of semi-axis lengths was standardized by dividing all of
them by the maximum length within a set, so that the maximum
standardized length equalled 1. This allowed us to calculate the
largest volume that was theoretically possible (i.e. all of the stan-
dardized semi-axis lengths are 1), which reflects a perfect spher-
oidal shape and, therefore, high DS. By dividing the actual
ellipsoid volume by the theoretical maximum, we obtained a
proportional volume. This proportional volume varies between
0 (a ‘cigar’-like shape of ellipsoids, Fig. 1a), and 1 (a perfect
sphere, Fig. 1b), reflecting low and high DS, respectively. Char-
acterization of multidimensional ellipsoids based on covariance
matrices relies on the assumption of linear relationships among
stability properties (Supplementary Methods). In our case this
assumption is satisfied for most study systems and disturbance
types (e.g. Figs S8–S15).
To test the effect of disturbance properties on DS (H1) we

fitted generalized mixed-effects models (Gamma distribution)
with either ellipsoid volume or semi-axis length (per each
rank, Fig. 1c) as a response (Supporting Information Meth-
ods). As fixed effect predictors we included disturbance type
(as a factor) and intensity (as a continuous variable). At the
community level, we included study system as a random slope
and at the population level, the random slope structure con-
sisted of the species nested within the study system. We tested
for the significance of fixed-effect terms using likelihood-ratio
tests (LRT), but in our interpretations focused on effect sizes,
because our study is based on simulations and virtually any-
thing can become significant given enough replicates. At the
community level, there was no variation in persistence for at
least one disturbance type in the three study systems (persis-
tence was 0 in all replicates of a rare species removal distur-
bance in both grassland systems and it was 1 in all replicates
of random disturbance and rare species removal of the algae
system). This precluded calculation of semi-axis lengths and
ellipsoid volumes using all four stability properties (i.e., four
dimensions) for these study systems. Therefore, we first fitted
models using all four dimensions with only three study sys-
tems (forest, vole-mustelid and wild boar-virus), and then
used three dimensions (excluding persistence) to fit models
with all six study systems. The results from both analyses are

© 2019 John Wiley & Sons Ltd/CNRS
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qualitatively the same. The results based on three dimensions
are presented in the main text, and those based on four
dimensions in Fig. S16, Tables S4 and S5.

Pair-wise correlations

To test whether all pair-wise correlations among stability
properties were positive (H2) and affected by the disturbance
properties (H3), we calculated Spearman-rank correlation for
each pair of stability properties obtained for each of the 13
scenarios at the community level. Similarly, at the population
level, Spearman-rank correlation was calculated for each

species within each scenario. Next, we transformed these
Spearman-rank correlations into Fisher’s z scores to improve
their normality and to avoid any disproportionate influence of
extreme values, and used them as effect sizes in the meta-ana-
lysis (Koricheva et al. 2013). We fitted mixed-effects meta-
analytic models (Gaussian distribution) with the fixed effects
of disturbance type (a factor), disturbance intensity (a contin-
uous variable), and an interaction between them. At the com-
munity level, the models included the study system and
replicate as random intercepts. At the population level, also
species identity was included as a random intercept. All meta-
analytic mixed-effects models were fitted with the library
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Figure 3 At the community level (a) disturbance type did not affect semi-axis lengths, whereas at the population level (b) semi-axis lengths were affected by

the disturbance type. High DS was found under random disturbance, as indicated by the semi-axis lengths of the 1st rank on average shorter compared to

other disturbance types, and the semi-axis lengths of the 3rd and 4th order longer compared to other disturbance types. We observed large variation

among study systems in their semi-axis lengths. Results are shown for disturbance intensity = 0.2 (since there is no effect of intensity). The semi-axis

lengths are shown for each rank separately (1–3 for the community and 1–4 for the population level). The dots show outliers. Study systems are described

in Table S3, different colours reflect different disturbance types: spatially-structured, rare species removal and random disturbance.
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metafor in R (Viechtbauer 2010). All analyses were conducted
in R 3.4.2 (R 2017).

RESULTS

Effect of disturbance properties on the dimensionality of stability

At the community level, neither disturbance type nor intensity
affected DS (as measured by semi-axis lengths, Fig. 3a &
Fig. S17a; and ellipsoid volumes, Fig. 4a & Fig. S18a; Table S4).
However, study systems varied in their DS, as measured by
semi-axis lengths (Table S6, Fig. 3a) or ellipsoid volumes
(Fig. 4a). While grassland and forest communities were charac-
terized by high DS (Fig. 4a), corresponding to spheroid-looking
stability ellipsoids (Fig. S19a,b), vole-mustelid and algae
communities had low DS, corresponding to a ‘cigar’-like
ellipsoids.
At the population level, the disturbance intensity did not

affect DS (Fig. S18b), while disturbance type did (Table S4).
Random disturbance increased DS (Fig. 4b). This was also
reflected in the differences among semi-axis lengths: under
random disturbance, the semi-axis lengths of the 1st rank were
shorter than for other disturbance types, and the semi-axis
lengths of the 3rd and 4th order were longer than for other dis-
turbance types (Fig. 3b). At the population level, DS varied
among study systems and species (Fig. 4b, Table S5).

Pair-wise correlations between stability properties

At the community level, pair-wise correlations were on aver-
age positive (supporting H2) and three of six correlations were
affected by disturbance properties (supporting H3, Fig. 5a).
The correlation of recovery with resistance and of recovery
with invariability depended on the disturbance type, with pos-
itive correlations under random disturbance and very weak
correlations (around 0) under spatially structured disturbance.
The correlation between invariability and persistence became
weaker and approached 0 as disturbance intensity increased.
At the population level, two pair-wise correlations were on

average negative, three were positive, and one correlation was
close to 0 (Fig. 5b–d). All pair-wise correlations were affected
to a certain degree by disturbance type (Table S7). Addition-
ally, disturbance intensity interacted with disturbance type in
its effect on one correlation (invariability with recovery,
Fig. 5c) and affected another one (invariability with resis-
tance) in an additive way (Fig. 5d). There was no coherent
pattern in how disturbance type modulated different pair-wise
correlations.

DISCUSSION

We tested whether the correlation structure among stability
properties was affected by disturbance properties across five
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Figure 4 Disturbance type did not affect proportional ellipsoid volumes at the community (a), but did affect them at the population (b) level: random

disturbance increased the dimensionality of stability, as visible from larger ellipsoid volume. We observed large variation among study systems in their

ellipsoid volumes, especially at the community level. Results are shown for disturbance intensity = 0.2 (since there is no effect of intensity). At the

maximum proportional volume (= 1) DS is highest, corresponding to a perfect sphere. The lower the proportional volume the lower is DS, with ellipsoid

shape changing via a ‘frisbee’-looking to a ‘cigar’-like shape. Ellipsoids at the community and population level are calculated using three and four

dimensions, respectively (see Methods). Abbreviations are as in Fig. 3.
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communities, differing in species richness and number of
trophic levels. Contrary with our expectation (H1), we did not
find an effect of disturbance properties on the dimensionality
of stability (DS) at the community level. At the population
level, DS was higher under random disturbances. Addition-
ally, at both levels of organization DS varied largely among
study systems. At the community level, as expected (H2), we
found generally positive correlations among different stability
properties. In contrast, at the population level, the sign and
magnitude of correlations were highly heterogeneous. Finally,
pair-wise correlations at both levels depended on the distur-
bance properties, mainly on disturbance type, supporting our

hypothesis (H3), although the effect sizes were smaller at the
community level.

Dimensionality of stability at the community and population level

We did not find any effect of disturbance properties on DS at
the community level. However, our findings reveal high
heterogeneity in DS among study systems. For 4 of the 6
study systems, community stability was a highly-dimensional
concept (Fig. 4a), suggesting that monitoring these systems
requires measuring multiple stability properties. A promising
avenue for future research would be investigating whether –

●●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

Random
Rare species removal

Spatially−structured

0.1
0.2
0.3
0.4

Random
Rare species removal

Spatially−structured

Invariability
vs. resistance

Invariability
vs. recovery

Invariability
vs. persistence

Recovery
vs. resistance

Recovery
vs. persistence

Resistance
vs. persistence

(a)

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

Random

Rare species removal

Spatially−structured

Random

Rare species removal

Spatially−structured

Random

Rare species removal

Spatially−structured

Random

Rare species removal

Spatially−structured

Invariability
vs. persistence

Recovery
vs. resistance

Recovery
vs. persistence

Resistance
vs. persistence

(b)

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2
Fisher z score 

 between invariability and recovery

Spatially−structured, 0.1

Rare species removal, 0.1

Random, 0.1

Spatially−structured, 0.2

Rare species removal, 0.2

Random, 0.2

Spatially−structured, 0.3

Rare species removal, 0.3

Random, 0.3

Spatially−structured, 0.4

Rare species removal, 0.4

Random, 0.4

(c)

●

●

●

●

●

●

●

−2 −1 0 1 2
Fisher z score 

 between invariability and resistance

Spatially−structured

Rare species removal

Random

0.1

0.2

0.3

0.4

(d)

Figure 5 Effects of disturbance type and intensity on Fisher’s z scores representing all pair-wise correlations between stability properties at the community

(a) and population (b–d) level. At the community level, majority of correlations were positive (a), whereas at the population level, the sign and magnitude

of correlations were highly heterogeneous (b–d). Disturbance type affected two of six correlations at the community level and all correlations at the

population levels. Shown are the effect sizes (and their 95% CI) from the model that described the data the best. For those correlations not affected by

tested variables the effect size obtained with the model including the intercept only is shown (i.e. the effect across all study cases). Abbreviations are as in

Fig. 3.
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and what – properties of a system predict its DS. At the com-
munity level, our findings indicate that such candidates of sys-
tem properties as species richness and number of trophic
levels do not discriminate the systems with low and high DS
(Fig. S20a,b). Indeed, our two species-poor systems (‘vole-
mustelid’ and ‘wild boar-virus’) exhibited strikingly different
DS (Fig. 4a). Similarly, we observed both high and low DS in
communities with either one (e.g. ‘algae’ vs. ‘grassland’) or
two trophic levels (‘vole-mustelid’ vs. ‘wild boar-virus’). Taken
together our results indicate that, although DS does not
depend on disturbance properties, measuring multiple stability
properties is necessary until we can establish whether and
what system properties underlie DS.
Similarly to the community level, DS was highly context-

dependent at the population level: in addition to variation
among disturbance types, we also found high heterogeneity
among study systems and species (Table S5), with the
highest dimensionality under random disturbance.
Although this type of disturbance may seem of little rele-
vance to real-world applications, it is closely mimicked by
the application of certain chemicals (Roessink et al. 2006;
De Laender et al. 2016), and therefore its effects on DS
deserve further investigations. Interestingly, our findings
indicate that species-poor systems may generally have
higher DS (Fig. S20d). Since population invariability is
known to be lower in species-rich systems (Gonzalez &
Descamps-Julien 2004; Jiang & Pu 2009; Gross et al.
2014), it is likely that species richness modulates the rela-
tions of population-level invariability with other stability
properties. However, as we did not experimentally manipu-
late species richness in this study, this is a hypothesis to be
tested by future research.
Reflecting the context-dependence of DS, all pair-wise cor-

relations between population stability properties depended on
the disturbance type, and additionally two out of six
depended on the disturbance intensity (Fig. 5b–d). These
results corroborate earlier analytical derivations (Harrison
1979) that showed that the relation between population resili-
ence and resistance depends both on density-dependence and
on the environmental sensitivity of the population growth
rate. In fact, the high heterogeneity found in the meta-analytic
models testing the context-dependence of the pair-wise corre-
lations between population stability properties (Table S8)
points towards species-specific differences which may be due
to differences in density dependence (as found by Harrison
1979) or any other species-specific properties (e.g., population
growth, carrying capacity).
From a monitoring perspective, the context-dependence of

the correlative structure among stability properties at the pop-
ulation level (H3) means that quantification of population sta-
bility as a whole requires measurements of multiple stability
properties unless the context-dependence of these properties
was established beforehand. Even though this may sound like
a daunting task, it is already a well-established practice within
population viability analysis (Beissinger & Westphal 1998;
Pe’er et al. 2013). In such studies, multiple stability properties
such as time to extinction, minimum viable population size,
mean population size, etc. are jointly reported as a rule (Pe’er
et al. 2013).

Across-system differences in dimensionality of stability and

plausible mechanisms

We did not find any effect of disturbance type on DS at the
community level but higher DS was observed for random dis-
turbances at the population level. Although these general
results hold across the five different study systems, the largest
heterogeneity in DS was revealed among study systems. As
mentioned above, this heterogeneity cannot be explained by
system properties as species richness and number of trophic
levels. Two general mechanisms behind the responses of DS
to disturbance can be distinguished: changes in the intensity
of species interactions and changes in the degree of stochastic
dynamics of the system. Although we have not experimentally
manipulated these mechanisms here, we discuss the revealed
differences in DS among our models in light of how they rep-
resent these mechanisms.
Changes in the intensity of species interactions could

explain the link between disturbances and DS. Indeed, previ-
ous research demonstrated that inter- and intraspecific interac-
tions affect community stability (McCann 2000; Th�ebault &
Loreau 2005; Barab�as et al. 2016). Moreover, the effect of
changes in species interactions on DS may differ depending
on the primary type of interactions within a system (competi-
tive vs. trophic), because vertical diversity was shown to mod-
ulate the biodiversity – stability relationship (Reiss et al. 2009;
Radchuk et al. 2016b; Wang & Brose 2018). Indeed, in our
simulations, the removal of a rare species from communities
driven by competitive interactions (algae, grassland and forest
systems) resulted in lower DS (Table S9) both at the commu-
nity and population level. The mechanism underlying the
lower DS in these communities after removal of rare species
(Table S9) may be an increasing strength of competitive inter-
actions among the remaining species.
Stronger competitive interactions presumably occurring

after removal of rare species, may in turn lead to more deter-
ministic dynamics of the system. The degree of deterministic
system behaviour may itself affect DS. Indeed, more stochas-
tic population dynamics likely result in weaker pair-wise cor-
relations among stability properties, thus leading to higher
DS. In support of this expectation, we found increased DS
after a spatially structured disturbance in systems consisting
of two strongly interacting species at different trophic levels
(Table S9). Such two-species communities are presumably
more prone to stochastic effects than multispecies communi-
ties, and therefore exhibit the above-described behaviour. To
closer inspect the relation between system stochastic beha-
viour and DS, we used population abundance and community
evenness as rough proxies of the influence of demographic
stochasticity on populations and communities, respectively
(Supplementary Methods). Overall, we found an increase in
DS under higher stochasticity at both population and commu-
nity levels (Fig. S21-S22). However, the responses varied
among disturbance types, study systems and species (for the
population-level DS; Figs S23-S24). Clearly, we did not exper-
imentally vary stochasticity, as this was not the goal of our
study, and future research in this direction is warranted.
The change of system behaviour from stochastic to deter-

ministic and vice versa may also be caused by dispersal.
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Dispersal plays an important role in stochastic community
assembly (Chase 2007) and has recently attracted attention in
the context of metapopulation and metacommunity stability
(Dai et al. 2013; De Raedt et al. 2017; Gilarranz et al. 2017;
Zelnik et al. 2018). Furthermore, functional diversity, in par-
ticular response diversity and correlations among effect and
response traits were suggested as mechanisms potentially
explaining pair-wise correlations between stability properties
(Pennekamp et al. 2018). Additionally, some of the observed
differences in system responses may be due to the model type
used and not especially because of the system-specific charac-
teristics. Thus, models such as the Lotka-Volterra model (used
for the algae community) result in more deterministic commu-
nity dynamics compared to individual-based models that
incorporate more stochasticity at different levels and processes
(see Supplementary Methods for details). Indeed, the algae
model showed a strikingly clear response as compared to
other systems (Table S9, Fig. 4a), which may be explained by
deterministic system behavior.

Challenges and future research

Our study identified several challenges associated with measur-
ing DS. Amongst those are: quantifying the relationships
among stability properties that are non-linearly related; choos-
ing appropriate state variables to measure stability properties;
choosing specific stability properties at each level of organiza-
tion; deciding on the disturbance types and intensity levels. A
wide variety of stability properties is used in the literature, and
different approaches to quantifying them are available (Grimm
& Wissel 1997; Ingrisch & Bahn 2018). For example, we have
chosen to measure resistance at the first time step after distur-
bance. An alternative would be to measure resistance at the
time step when the response is the strongest, which, naturally,
will differ among species and systems. Comparison of how
existing stability properties and methods to measure them per-
form under different conditions and unification of such
approaches is an avenue for future research (Ingrisch & Bahn
2018). Furthermore, we here focused on disturbance by remov-
ing individuals mainly for the sake of comparability of results
among systems and models. What the implications of other dis-
turbance types are, in particular the addition of individuals (s-
tocking) and habitat fragmentation, and how they compare to
the removal of individuals, remains to be tested.
Furthermore, a future research agenda on DS should include:

a mechanistic investigation of interactions among disturbance
types, developing approaches to quantify non-linear responses
of systems to disturbance, and non-linear trade-offs among
dimensions of stability. Importantly, understanding the mecha-
nisms underpinning the responses of DS requires that future
experiments on real and in-silico systems manipulate potential
mechanisms, generally the strength and sign of species interac-
tions, and the stochasticity of the system’s dynamics (which
may be achieved by manipulating levels of demographic and
environmental stochasticity, response diversity, dispersal abili-
ties and environmental sensitivities of the species in the com-
munity). For such experiments the use of modelling studies, as
done here, seems a useful way forward, because collection of
such data empirically is feasible only in micro- and mesocosm

settings (Baert et al. 2016b; Garnier et al. 2017; Karakoc� et al.
2018; Pennekamp et al. 2018). Importantly, although measuring
DS was rather easy in our modelling study, empirical studies
may be limited because of the difficulty to measure multiple
stability properties in natural systems.
There is a large, continually growing literature on stochastic

population, community and metacommunity ecology, which
considers relationships between (usually only two) different
stability properties at different levels of organisation, and
includes age-, stage- and spatial structure (e.g. Petchey et al.
1997; Ovaskainen & Hanski 2002; Inchausti & Halley 2003;
de Mazancourt et al. 2013; Arnoldi et al. 2016; Wang & Lor-
eau 2016). We here point out avenues for extending the cur-
rent research and underline that both empirical and
theoretical efforts are needed.

CONCLUSIONS

We used process-based models developed and parameterized
to reflect a range of natural systems to test the effect of dis-
turbance properties on the dimensionality of stability mea-
sured at the population and community level. Our findings
indicate that in the majority of cases monitoring of popula-
tion and community stability will require quantification of
multiple stability properties, and the use of a single proxy is
not justified (Donohue et al. 2013; Hillebrand et al. 2018).
Moreover, we also show that the correlations among stability
properties may differ depending on the level of organization,
which was demonstrated only once until now by Hillebrand
et al. (2018), who compared the community and ecosystem
level. We believe that our study will catalyse the emerging
research on the relations among stability properties measured
at different organization levels, and temporal and spatial
scales, which in turn will lead to the development of a com-
prehensive theory of community and population dynamics
further from their equilibrium.
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GLOSSARY

State variables are variables used to quantify stability proper-
ties of a system, i.e. a population or a community in the con-
text of this study. Examples of state variables are abundance
(population level) and species richness or total abundance
(community level).
Resistance is the degree to which a state variable is changed

following a disturbance (Pimm 1984), here measured as the
difference between a perturbed and a control system at the
first sampling after the treatment (Hillebrand et al. 2018).
Recovery is the capacity of a system to return to its undis-

turbed state following a disturbance (Ingrisch & Bahn 2018),
here measured as the degree of change in a state variable of a
perturbed compared to a control system at the last sampling
(Hillebrand et al. 2018).
Persistence is the existence of a system through time as an

identifiable unit (Pimm 1984; Grimm & Wissel 1997), mea-
sured by the time during which a system maintains the same
state (i.e., state variables within certain ranges) before it
changes in some defined way (Donohue et al. 2016).
Invariability reflects the temporal constancy of a state vari-

able following the disturbance, usually measured as the
inverse of temporal variability of a state variable (Wang et al.
2017). Higher invariability indicates higher stability (Donohue
et al. 2013).
Disturbance is a change in the biotic or abiotic environment

that alters the structure and dynamics of a system (Donohue
et al. 2016).
Stability is a multidimensional concept that tries to capture

the different aspects of the dynamics of the system and its
response to perturbations (Donohue et al. 2016). Here, we
consider the following stability properties: resistance, recovery,
persistence, and variability.
The dimensionality of stability (DS) depends on the strength

of correlations among stability properties. Low correlation
corresponds to high dimensionality. If dimensionality is high,
a single stability measure cannot be used as a sole indicator of
the overall system stability (Donohue et al. 2013).
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